Analysis of heterogeneous dengue transmission in Guangdong in 2014 with multivariate time series model
نویسندگان
چکیده
Guangdong experienced the largest dengue epidemic in recent history. In 2014, the number of dengue cases was the highest in the previous 10 years and comprised more than 90% of all cases. In order to analyze heterogeneous transmission of dengue, a multivariate time series model decomposing dengue risk additively into endemic, autoregressive and spatiotemporal components was used to model dengue transmission. Moreover, random effects were introduced in the model to deal with heterogeneous dengue transmission and incidence levels and power law approach was embedded into the model to account for spatial interaction. There was little spatial variation in the autoregressive component. In contrast, for the endemic component, there was a pronounced heterogeneity between the Pearl River Delta area and the remaining districts. For the spatiotemporal component, there was considerable heterogeneity across districts with highest values in some western and eastern department. The results showed that the patterns driving dengue transmission were found by using clustering analysis. And endemic component contribution seems to be important in the Pearl River Delta area, where the incidence is high (95 per 100,000), while areas with relatively low incidence (4 per 100,000) are highly dependent on spatiotemporal spread and local autoregression.
منابع مشابه
Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014
INTRODUCTION Dengue is endemic in more than 100 countries, mainly in tropical and subtropical regions, and the incidence has increased 30-fold in the past 50 years. The situation of dengue in China has become more and more severe, with an unprecedented dengue outbreak hitting south China in 2014. Building a dengue early warning system is therefore urgent and necessary for timely and effective r...
متن کاملThe Driving Force for 2014 Dengue Outbreak in Guangdong, China
Dengue fever has rapidly spread in recent decades to become the most globally expansive viral vector-borne disease. In mainland China, a number of dengue outbreaks have been reported since 1978, but the worst epidemic in decades, involving 45230 cases and 76 imported cases, resulting in six deaths in Guangdong province, emerged in 2014. Reasons for this ongoing surge in dengue, both imported an...
متن کاملSpatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010
BACKGROUND Dengue fever, a mosquito-borne viral disease, is a rapidly emerging public health problem in Ecuador and throughout the tropics. However, we have a limited understanding of the disease transmission dynamics in these regions. Previous studies in southern coastal Ecuador have demonstrated the potential to develop a dengue early warning system (EWS) that incorporates climate and non-cli...
متن کاملIdentifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011.
We examined the spatial distribution pattern and meteorological drivers of dengue fever (DF) in Guangdong Province, China. Annual incidence of DF was calculated for each county between 2005 and 2011 and the geographical distribution pattern of DF was examined using Moran's I statistic and excess risk maps. A time-stratified case-crossover study was used to investigate the short-term relationshi...
متن کاملEvaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016